

Silverstone Technology Cluster - Future Mobility Special Interest Group

energy Unlocking a hydrogen future

Solving hydrogen storage & transport Affordable, Scalable, Safe

30%

of all global emissions arise from hard-to-abate sectors

Why do we need Hydrogen?

Hard-to-abate sectors

Electrify wherever you can but not at every price

Princple 1

Use every tool in the toolshed to achieve the fastest possible decarbonistation

Princple 2

We must beat diesel (and other fossil fuels) on cost alone...

Princple 3

... without subsidies, by 2030

Where is Hydrogen most effective? (Competitive Either/Or Comparison)

Average power demand

Where are we actually seeing Hydrogen demanded?

Clue: It's not either/or, it's Yes And!

Where are we actually seeing Hydrogen demanded

morinEV

LINE

High Energy MW-scale Electric Vessel Charging: 300 kW to 10 MW scale charging infrastructure, especially where the grid isn't sufficient (maritime, mining, construction). (Above: **Yinson GreenTech**, Singapore – need H2-powered flexible charging as the grid isn't sufficient)

-*O'

HYDROMOVER

SC5121J

Where are we actually seeing Hydrogen demanded?

E-fuels manufacture: Hydrogen is the core ingredient in synthetic e-fuels like e-methanol which is used in both maritime and racing. (**VAST Renewables** solar-e-methanol South Australia)

Direc Re-Powering High-Powered Vessels/Vehicles: Hydrogen will be the lowest cost fuel (e or fossil) by 2040 without subsidy (Offshore Renewable Energy Catapult), potentially earlier. Some groups moving now. (Windcat, CMB.Tech, MAN, (recent 27 March 2025))

HYDROCAT 60

There is one big **PROBLEM**

H2 Price Contribution

Source: Hydrogen Council (September 2024), Harvard University Center for Environment (October 2024)

Hydrogen Investments

Production Storage/Distribution

We SOLVED this problem

Cost-parity with Diesel

Interoperable, high-capacity packaged gas

Breakthrough safety and efficiency

Rux HARMONY

We integrate nano-porous materials in ISOcertified, containerised storage systems

Exemplary Rux storage system operating at LNG-like temperatures and low pressures (~20ft container volume)

Patented nano-porous materials integrated in next-generation carbon composite tanks

*Performance validation by National Composites Center (Bristol, UK)

Our patented materials act like a molecular sponge for hydrogen

Rux Metal-Organic Framework (MOF) Gaseous Hydrogen molecule (H₂) H₂ always remains gaseous, seamless adsorption, no energy required

Standard H₂ storage tank

MOF-enabled storage system

1 gram of Rux MOF has the equivalent surface area of a football field

IE TO tadium

1.146

1 gram of Rux MOF has the equivalent surface area of a football field

Highest EFFICIENCY means LOWEST COST

	Cost	Safety	Density	Efficiency	
Liquid H2	153 \$/MWh	Explosion Risk	2.10 MWh/m ³	66%	
350bar CH2	78 \$/MWh	Explosion Risk	0.67 MWh/m ³	91%	Therm Pressuriz
700bar CH2	110 \$/MWh	Explosion Risk	1.27MWh/m ³	84%	
Rux-tech	 72 \$/MWh	Low pressure / Inherently Safe	2.00 MWh/m ³	95%	Adsorpt
CN-Methanol	217 \$/MWh	Toxic	4.38 MWh/m ³	40%	
CN-Ammonia	248 \$/MWh	Extremely Toxic & Flammable	3.52 MWh/m ³	35%	Chemic Storag
Metal Hydrides	525 \$/MWh	Spontaneous Ignition	2.12 MWh/m ³	42%	

1. Based on Rux Energy's End-2-End Techno-Economic Model (Co-developed with PA Consulting); CN = Carbon Neutral (Fuel produced from 100% zero-emission sources)

Day in a Life of a Tugboat

Shoreside Power Feasibility and field trials

Rux is making agile shoreside / shore-to-ship power a reality with our feasibility studies & pilot trials

SPOHL Project

(Shoreside Power)

UK based project - 11 partners

Benchscale Feasibility and Design Engineering

- Goal: Carnot 70% efficiency engine
- Goal: Rux agile storage scalable to 40 MWh

£3M subsidy from **Innovate UK** via Clean Maritime Demonstration Competition Round 4

Manufacturing of world's First-of-a-Kind Type V storage tank for H2 storage utilizing MOFs

Preparation of support structure (mandrel)

Composite wrapping process using Automated-Fiber-Placement

Wrapped composite tank ready for curing step in autoclave

Harbour Vessel Decarb – A Maritime Case Study

ETAN

HyZEM - Hydrogen Zero Emissions Marine Vessel

For Tug boats + Crew Transfer vessels

Designed for:

- Extreme brake-horsepower outputs
- High efficiency, high torque, fast refuelling, ruggedised and space constrained applications
- Power output up to 5 MW output, 50 MWh all day operation matching existing diesel tug operational uptime.

Key Takeaways

Hydrogen is coming...

...but not how we thought

Key Takeaways

Cost is everything...

...our target is cost parity with diesel

Key Takeaways

Collaborative not competitive...

... is what will get us to decarbonize, faster, and cheaper.

Join us in accelerating the path to zero carbon

energ

Rux Energy acknowledges the Gadigal & Dharawal people of the Eora nation (Rux Energy and NSW R&D Partner Sites), Whadjuk Nyoongar people (Rux Perth), and the Bunurong people of the South-Eastern Kulin Nation (Rux Victoria), on whose lands we conduct our research and business. Sovereignty was never ceded - always was, always will be Aboriginal land.

Dr Jehan Kanga – Founder & CEO jehan@ruxenergy.com 🖂

Marius Bosch – Head of Strategy marius@ruxenergy.com 🖂

energy Unlocking a hydrogen future

