DIGITAL \& ADVANCED MANUFACTURING ADVANCES IN ADDITIVE MATERIALS

YOUR FEEDACK IS IMPORTANT TO US

Automation in Manufacturing

9:00	Registration and Networking
$9: 30$	Welcome
$9: 35$	AM Materials and Process Control - Ian Marsh
$9: 55$	New Materials and Testing - Matt J ones
$10: 15$	Addressing a few AM myths in the design office - Graham Barnes
$10: 35$	Break
$10: 55$	Additive Manufacturing In Defence - Alex Champion
$111: 15$	PBF-LB Capability Development in High Strength Aluminium Alloys - J oseph Chamberlin
$11: 40$	Panel Discussion and Closing Comments - Kieron Salter
$12: 00$	Lunch and Networking
$12: 45$	Tour

DIGITAL \& ADVANCED MANUFACTURING ADVANCES IN ADDITIVE MATERIALS

Process Control in Additive

Manufacturing

About Me

- Process Control Engineer at DMC
- Worked in Spain and the UK
- Studied at Loughborough University
- Enjoy playing sport
- Primarily badminton
- Competitive lifesaving

Overview

- What is Process Control - why do we need it?
- Process Control at DMC
- What does the future of Process Control Look like

Process Control Definition

- Process Control is the ability to monitor and adjust a process to give a desired output
- The process involves active controlling of the variables based in the results at the time of monitoring
- Often involves the use of statistics such as control charts
- Can even lead to process improvements

What is a Process Control chart?

- A graph used to study how a process varies over time.
- Used to measure on-going performance by measuring the outputs of a process.
- A process is said to be 'in control' when it only contains common cause variation.
- Points above or below the LCL and UCL, or patterns in the data indicate possible special causes.
- Specific rules have been developed to help to determine when patterns should be investigated.

Journal of Quality Technology - Zones

Yield (0.2 offset) 60 micron flat bars

Journal of Quality Technology Assignable

 cause tests- Test 1. One Point Beyond Zone A
- Test 2. Nine Points in a Row on One Side of the Centre Line
- Test 3. Six Points in a Row Steadily Increasing or Decreasing
- Test 4. Fourteen Points in a Row Alternating Up and Down
- Test 5. Two Out of Three Points in a Row in Zone A or Beyond
- Test 6. Four Out of Five Points in a Row in Zone B and Beyond
- Test 7. Fifteen Consecutive Points within Zone C
- Test 8. Eight Points in a Row on Both Sides of Centreline with None in Zone C.

Applying the Tests for Special cause

- Typically only a subset of the 8 tests are applied to Control Chart interpretation
- Tests 1 and 5 should be applied generally
- Sensitivity to smaller process shifts may benefit from applying tests 2 and 6
- Consistent mean shifts may be best detected by tests 4 and 8
- Test 7 will uncover an improvement of the process
- Tests 3 should be used if the process inherently drifts
- Applying too many of these tests increases the chance of a false alarm

Selecting special cause tests

- Test 1. One Point Beyond Zone A
- Test 2. Nine Points in a Row on One Side of the Centre Line
- Test 3. Six Points in a Row Steadily Increasing or Decreasing
- Test 4. Fourteen Points in a Row Alternating Up and Down
- Test 5. Two Out of Three Points in a Row in Zone A or Beyond
- Test 6. Four Out of Five Points in a Row in Zone B and Beyond
- Test 7. Fifteen Consecutive Points within Zone C
- Test 8. Eight Points in a Row on Both Sides of Centreline with None in Zone C

Ultimate tensile strength control chart

UTS Ti64

Process Control at DMC

- Measuring the inputs (powder goods in)
- Monitoring the temperature and humidity in powder storage
- Measuring the outputs (tensile testing, porosity blocks)
- Use of control charts
- Use of industry accepted standards

Powder goods in

- Don't just trust a suppliers CoC
- Checking for:
- Hall/ Carney flow
- Particle size distribution (PSD)
- Powder morphology

Acceptable powder

Unacceptable powder

Job Pack for every build

- Powder sample
- Porosity cubes
- Tensile test specimens

Why do Tensile Testing

- Ensure quality
- Give our customers confidence
- Process control
- Understand the material properties
- Strength
- Ductility
- Elasticity
- Stiffness

Continuous improvement using control charts

- Pre and post furnace fix
- Gas optimisation fix

Can be removed as a statistical outlier

Standards in DMC

People

An idea for the future

Thanks for listening
Ian Marsh
lan.marsh@dmc-am.com

DIGITAL \& ADVANCED MANUFACTURING ADVANCES IN ADDITIVE MATERIALS

Best-in-class portfolio for the entire product value chain

Enterprise Application Integration for Industry 4.0 Scale

GrabCAD SDK
GrabCAD Software Development Partners

Material Performance

Salt Mist
ISO 4589-2
Oxygen Index

SD Compliant

Fortus 450mc

Preferred Materials:

- ASA
- ABS-M30, ABS-M30i, ABS-ESD7
- Antero 800NA
- Antero 840CN03
- PC-ABS, PC-ISO, PC
- ULTEM $^{\text {M }} 9085$ resin
- ULTEM™ $^{\text {M }} 1010$ resin
- FDM Nylon 12
- FDM Nylon 12CF
- ST-130

92 ci, 184 ci, 500 ci spool size

Validated Materials:

- VICTREX AM ${ }^{\text {™ }} 200$
- Kimya Kepstan® PEKK-SC
- Kimya PC-FR
- Addigy® PA6/66-GF20 FR LS
- FDM® HIPS
- PC-ABS Red
- PC Red
- PC Black
- ULTEM$^{\text {M }} 9085$ resin Red
- ULTEM ${ }^{\text {T }} 9085$ resin Jana White
- ULTEM $^{\text {™ }} 9085$ resin Dream Gray
- ULTEM $^{\text {™ }} 9085$ resin White 7362
- ULTEM $^{\text {n }} 9085$ resin Gunship Gray
- ULTEM ${ }^{\text {M }} 9085$ resin Aircraft Gray

92 ci spool size

FDM Material portfolio

Stratasys OpenAM ${ }^{\text {T }}$ Elements for Success
System, Software, Expertise

System

The Fortus 450mc printer, fully hardened (upgrade may be needed) and an OpenAM print head

OpenAM ${ }^{\text {TM }}$ Software

Stratasys OpenAM software plus Insight and GrabCAD Print

Expert Guidance

Detailed tuning support guide with Stratasys best practices

OpenAM Workflow

OpenAM

Software:
Creates Profile for new material; uploads Set to server

Package
Upgrade

Workstation (GC Print or Insight): Updates application w/ new parameters; slices part and generates CMB

Unlocked Fortus 450:

Upgrades printer software with new parameters, load CMB file, start build

Software overview

Key differentiators of OpenAM

Feature based tuning

- Quickly adjust desired characteristics by going to the feature tabs (Part, Vertical, InFill, Base, or Support)

Material class specific defaults and safe ranges

- Choose from a long list of polymers, via generic material chips, to get a head start on tuning success
- Max/Min parameter ranges set to reduce costly failures and lost time

Easy to use software

- Helpful tuning tool tips in the software paired with the
 Stratasys Tuning Guide help you achieve repeatable success

Generic Material Chips

OpenAM generic chips determine the default starting parameters and the max/min ranges based on the base material profile

Generic Chip Base Materials

Reusable Fortus Plus Cannisters and Spools available for purchase

Key Editable Parameters

Open Parameters Include:	Bead Modes:
Liquefier Temperature	Surface
Oven Temperature	Solid Raster
Max Velocity	Sparse Raster
Corner Velocity	Short Toolpath
Flow Factor	Base
Toolpath Prep Volume	First Layer
Toolpath End Volume	Sparse Support
Stringing Control	Support Interface
Min Layer Time	
Purge Time	
Extruder Fan Duty Cycle	
Plus, the option to set defaults for many GrabCAD Print and Insight slicing parameters	

OpenAM ${ }^{\text {TM }}$ Tuning Guide

Detailed guide to help you get faster, more reliable and repeatable results with OpenAM

Troubleshooting suggestions

Workflow suggestions for tuning new materials

Tips, support, build sheet cross reference guides

Mechanical Strength Testing

- Mechanical performance of FDM parts was characterized by tensile testing by ASTM D638
- Printed in XZ (on edge) and ZX (upright) orientations
- XZ demonstrates proper extrusion rate of toolpaths
- ZX demonstrates layer-to-layer cohesion strength
- Both orientations are important in overall part strength (XY and Z45 are hybrid variants of these orientations)
- In accordance with good practice for additively manufactured D638 coupons, only coupons that broke in either the gage
 length or narrowed section were included in the analysis

Mechanical Strength

Material	Machine	XZ (on edge)						ZX (upright)					
		Ult. Tensile Strength (psi)		Tensile Modulus (psi)		Elongation at Break (\%) ${ }^{1}$		Ult. Tensile Strength (psi)		Tensile Modulus (psi)		Elongation at Break (\%) ${ }^{1}$	
		Average	cov										
ASA	450 mc	4.558	5.5\%	235.000	11.6\%	6.3\%	21.5\%	3.643	6.0\%	243.000	7.6\%	1.9\%	11.5\%
	Datasheet (F900)	4.750		311.000		9.0\%		4.300		298.000		3.0\%	
$\begin{aligned} & \text { Nylon } \\ & \text { 12CF } \end{aligned}$	450 mc	10.879	3.5\%	1.225 .000	16.6\%	3.3\%	5.3\%	4.373	6.9\%	406.000	22.4\%	1.8\%	14.2\%
	Datasheet (F900)	9.190		1.370 .000		1.9\%		4.170		434.000		1.2\%	
ULTEM ${ }^{\text {TM }}$ 9085 Resin	450mc	11.215	4.7\%	340.000	6.9\%	5.8\%	8.4\%	6.467	11.1\%	299.000	5.1\%	2.5\%	13.0\%
	Datasheet (F900)	9.950		348.000		5.8\%		6.100		309.000		2.2\%	

Key Takeaway: Study data matches past characterization of Stratasys materials

[^0]
Mechanical Strength Results

Repeatable over time

Reproducible
between machines

Dimensional Precision (1/2)

Dimensional measurements conducted on a coordinate measuring machine (CMM)0
228mm check part test geometry provides

- Large number of features per part (43 unique measurements)
- Good range of feature sizes (3,5 to 228mm)
- Mixture of bosses and holes
- Mixture of curved and straight toolpaths
- Ability to be printed on all machine types in study

Dimensional Precision (2/2)

Aggregated Feature Checks	
Average Standard Deviation for Features $50,8 \mathrm{~mm}$	Average Standard Deviation for Features over 203 mm
$0,023 \mathrm{~mm}$	0.036 mm
Single Feature Check Example (AA1)	

Repeatable over time

Reproducible between machines

Feature AA1 Width Measurement

Precision

Single Feature Example

- 4 separate 9 " (228.6 mm) check

Model	Standard Deviation Feature AA1
F370	0.053 mm
Fortus 450 mc	0.028 mm
F900	0.013 mm

- Each machine type shows excellent repeatability of individual machines
- Machine to machine matching improves in the order F900>Fortus 450mc >F370

Feature AA1 Dimensional Check

Thank You

- stratasys

DIGITAL \& ADVANCED MANUFACTURING ADVANCES IN ADDITIVE MATERIALS

Addressing a few AM myths in the design office
Advances in Additive Materials - Digital \& Advanced Manufacturing Special Interest Group
19 ${ }^{\text {th }}$ October 2023
Graham Barnes CEng MIMechE
>AM materials are developing very quickly and working with KWSP during the formation of the DMC has highlighted a number of myths in the design and engineering community to the reliability and predictability of the AM solutions.
>How will we ever deal with the anisotropy of the AM materials?
> The material properties are hugely different build to build, how will we ever prove it is strong enough?
> Isn't it better we just machine them from solid?

WGP

Memories are short - weren't all metals isotropic?
$>$ Not a current stem design but novel for its time. The USE Atom stem had an interesting clamp mechanism which suited their anti-dive fork.
$>$ The faceplate was pretty conventional

- All the prototypes machined from 7075 T6 billets
$>$ All passed rig test and competition riding
> Time for volume manufacture

All 7075-T6 materials are not the same; Plate is anisotropic

Material	UTS X (MPa)	UTS Z (MPa)	Diff X/Z	Yield X $(M p a)$	Yield Y $(M P a)$	Diff X/Z
7075-T6 Plate	489	455	7.5%	434	386	12.4%

Scalmalloy - a serious alternative for 7075 T6 for AM

DMC are in the top 1\% of Scalmalloy suppliers in the World.
The difference in manufacturing orientation is approximately 1%

Material	UTS X (MPa)	UTS Z (MPa)	Diff X/Z	Yield X (Mpa)	Yield Y (MPa)	Diff X/Z
7075-T6 Plate (Min.)	489	455	7.5%	434	386	12.4%
7075-T6 General	572	-		503	-	
Scallmalloy AM	542	537	0.9%	522	516	1.1%
Difference	-5%			$+4 \%$		

: : PMC

Scalmalloy
Scalmalloy is a high strength aluminium alloy which was specifcally designed for adodive manutacturing. It combines excelent ductity, thigh strenget, and the low density of akuminium and therefore allows for welght reductions that cannot be achieved by any other $A M$ aluminium alloy O the market. It also oflers great corrosion resistance which can be improved further by anodising or coating:

Density	2.87 g/cm
Porosty	60.5 K

Mechankal Properties

Chemical composition

Element	Al	Mg	5 c	7	Mn	Fe	5	π	0	H
Min.	sai.	4.20	0.60	0.20	0.30					
Max		510	0.88	0.50	080	0.40	0	0.15	0.05	0.01

AM Titanium 6AL-4V Properties - On the face of it a little daunting for selection

Titanium 6AL-4V Properties - Quite a range but a little easier

Titanium 6AL-4V ASTM and DMC data

DMC has clear data showing typical production values and ASTM F2924-14 minimums

Where required the typical production values can be considered;

Caution

Consider carefully as to whether minimums are not sufficient as they will adversely affect schedule and cost.

Form	ASTM	UTS (Mpa)	Yield (Mpa)	Elongation (\%)
AM	F2924-14	895	825	10

With the design flexibility of AM, the structural benefits significantly outweigh the increase in headline properties.

Process Control
Datasheet
 spedis crreneth, temperature cappulifies sad corrosion resistance. is is ised in indistry secton
stretching from aerospace and medical to high-end autometive and motonport.

Density	$4.42 \mathrm{~N} / \mathrm{cm}^{\prime}$
Prosity	\cos

Chenscai composition ${ }^{\text {a }}$

Publiction date 24/05/2023	Rec. 0

Ductility of Ti 6AL-4V AM 60 $\mu \mathrm{m}$
$>$ Against the typical Yield values from DMC of 1039 MPa the indication is that the component not going to yield at the certification loadcase.
$>$ However, what how will the ductility of the material at 10% elongation affect failure mode.
$>$ Safety is paramount in this component.

WGP

AM Ti 6AL-4V Seat belt anchorage verification

Overload test to destruction
> Which will be highest
$>$ Belt capability
$>$ Bolt capability
> Component capability

Concurrent bolt head failure at 225% of certification loadcase and belt torn

Demonstration of AM Titanium 6AL-4V ductility
> The component had previous endured the certification load in the vehicle test. No damage
$>$ Been exposed to 33% overload on the rig test. No damage.
$>$ The component has resisted 224% of certification load without failure. The component is visibly bent and clear to mechanics not for future use.
$>$ The failure mode is desirably for the development of safety critical components.

KWSP Hypercar project

Beyond yield and progressive damage in different parts of the build

Back at the test house with the AM 6AL-4V Roll hoop
> Understanding the failure mechanisms of the materials and geometric structures to accommodate them unlocks the benefits of the AM process.
> Hollow structures with localized internal reinforcements has allowed this damage to propagate progressively from the contact point the remaining undamaged structure gives the foundations for further impact resistance.
> Multiple impacts or additional impact directions give further reassurance that safety is not compromised, and the certification standards are treated as a minimum.

Dispelling the myths

How will we ever deal with the anisotropy of the AM materials?$>$ In many cases conventional materials also exhibit anisotropy.
$>$ We are happy to analsye and predict the performance of composites and the difference in 0 and 90 directions is massive in comparison.The material properties are hugely different build to build, how will we ever prove it is strong enough?
$>$ Process control and a sound manufacturing partner for AM has given consistency to the products deployed at KWSP.
> Chasing a headline figure for material properties rather than the guaranteed minimums is a route to the undesirable variability.Isn't it better we just machine them from solid?
$>$ For properties alone the $\mathrm{AM} \mathrm{Ti} 6 \mathrm{AL}-4 \mathrm{~V}$ the minimum Strength values are higher than for the wrought product.
$>$ For Scalmalloy the figures are very close to the benchmark 7075 T6
$>$ The opportunities for geometric complexity gives significant structural opportunities from AM components and takes the efficiency of these AM structures to another level.

Some final thoughts

Firstly thank you to KWSP and DMC for the collaboration on the various projects we have been engaged.
I look forward to continuing this journey as we together improve both the structural and manufacturing simulations.
At KWSP we support the engineering of new structures to accommodate the attributes of AM materials whilst respecting the need to provide verification of the modelling approach and validation of the component performance.

If there is a particular application you would like to discuss, please reach out to us.

CONTACT DETAILS

THANK YOU

KW Special Projects,
Unit 1130,
Dadford Road,
Silverstone,
Northamptonshire, NN12 8AL

Office +44 (0) 1280704768
graham.barnes@kwspecialprojects.com
Mobile +447801679345

DIGITAL \& ADVANCED MANUFACTURING ADVANCES IN ADDITIVE MATERIALS

mitc

NATIONAL CENTRE ADDITIVE MANUFACTURING

PBF-LB Capability Development in High Strength Aluminium Alloys

Joseph Chamberlin

Advanced Research Engineer

NATIONAL CENTRE ADDITIVE MANUFACTURING

Aerospace

Construction

What is the Manufacturing Technology Centre?

Food \& Drink

Power \& Energy

mitc

Manulacturing
Technology Centre
NATIONAL
CENTRE
ADDITIVE
MANUFACTURING

What is NCAM?

mitc

ADDITIVE
MANUFACTURING

Opportunities for High Strength AI in AM

NATIONAL
CENTRE
ADDITIVE
Challenges for High Strength AI in AM

Can the alloys be produced as high-quality spherical powders with good processability?

Can the alloys be printed at high speeds without defects and with consistently good properties?

Can the alloys be easily post-processed to achieve the desired properties?
mic
Menulacturing
Technology Centre
NATIONAL CENTRE
ADDITIVE
MANUFACTURING

Material 1:
GM 7 xxx

Material 2: ECKART A20X

Excellent high fatigue performance

98\% purity 98\% purity
aluminium based on
Al-Zr-Fe structure

Gives high
conductivity while maintaining

Streamlined postprocessing and
finishing finishing

Current Material Development Work

Allows us to go from this...

Aim

$>$ To create a novel $7 x x x$ series aluminium chemistry and to investigate its's performance in PBF-LB, with trials to alter grain structure, reduce crack susceptibility and to gain an understanding in solidification behavior.

Objectives
$>$ Alloy Chemistry Identification and Characterisation.
> Density DoE Build.
$>$ Crack Mitigation Trials via Parameter Manipulation.
>EBSD Assessments.
> In-situ PBF-LB System with Synchrotron X-Ray and Infrared Measurement Capability to assess Vapour Cavity, Melt Pool Depth, Temperature Gradient (G), and Solidification Rate (R).

Image: Race Care Network

NATIONAL

CENTRE
ADDITIVE

7xxx Material Development

MANUFACTURING

Chemistry Identification
$>$ Vickers micro-hardness testing of cast 20 g Al12ZnMg ingots (T6 condition) resulted in an average hardness of $211 \pm 5 \mathrm{VHN}$ indicating a yield strength of $>600 \mathrm{MPa}$.
> For comparison, 7075 in the T6 condition has a hardness of 182 VHN , corresponding to an ultimate tensile strength of 573 MPa .

	Composition (wt.\%)								Scheil Liquidus (${ }^{\circ} \mathrm{C}$)	Scheil Solidus $\left({ }^{\circ} \mathrm{C}\right)$	Freezing Range ($\left.{ }^{\circ} \mathrm{C}\right)$	CSC** ${ }^{\text {d }}$
Alloy	AI	Zn	Mg	Cu	Cr	Zr	Si	CSC				
7075	Bal.	5.5	2.5	1.6	0.23	0	0	0.28	634	326	308	86.2
Al12ZnMg Ideal	Bal.	12	3.5	<0.5	0	0.2	0	0.30	622	446	176	52.8
AISi10Mg	Bal.	0	0.35	0	0	0	10	0.34	594	559	35	11.9

NATIONAL
CENTRE
ADDITIVE
MANUFACTURING

7xxx Material Development

Specimen Manufacture

$>$ A Trumpf Truprint 3000 system was used with the gas atomised powder to create $10 \times 10 \times 17.5 \mathrm{~mm}$ pyramidal specimens.
$>$ Parts were manufactured under a continuous argon flow across at $1.8 \mathrm{~m} / \mathrm{s}$ to achieve $<1000 \mathrm{ppm}$ of oxygen in the build environment.
\rightarrow A constant layer thickness of $30 \mu \mathrm{~m}$, preheating temperature of $200^{\circ} \mathrm{C}$ and spot size of $100 \mu \mathrm{~m}$ was used throughout this study.

Image courtesy of Trumpf Ltd

$10 \times 10 \times 17.5 \mathrm{~mm}$

Build File in TruTops

Specimen Manufacture
> There were four main types of defects observed across the specimens:
> Solidification Cracking
$>$ Keyhole Porosity
> Fine Gas Porosity.
$>$ Lack of Fusion.
$>$ Keyhole porosity was observed in the higher powers (300 W and 400 W) and across the full speed range with the most severe at the lowest scan speed ($500 \mathrm{~mm} / \mathrm{s}$).

∞	$500 \mathrm{~mm} / \mathrm{s}$	$750 \mathrm{~mm} / \mathrm{s}$	1000 mm/s	$1250 \mathrm{~mm} / \mathrm{s}$
200 W	97.73\%	92.28\%	95.98%	93.84\%
300 W		92.71\%	92.49\%	95.54%
400		95.40\%	89.64\%	(103\% ${ }^{\text {95.93\% }}$

mitc
Manulacturing
Technology Centue
NATIONAL
CENTRE
ADDITIVE
MANUFACTURING

7xxx Material Development

EBSD Analysis

$>$ The amount of texturing can be quantified and compared using the maximum intensity of the pole figures known as the multiple of uniform density (MUD).
$>$ MUD of 1 corresponds to randomly oriented grains
$>M U D>1$ is indicative of texture.
$>$ The specimens manufactured at 400 W are less textured than those manufactured at 200 W and an equiaxed grain morphology was achieved in the lower region of specimen C (400 W, 500 mm / s).

(c)
(d)

mitc

Manulacluring
Technology Centre
NATIONAL
CENTRE
ADDITIVE
MANUFACTURING

7xxx Material Development

EBSD Analysis

$>$ Further EBSD analysis of specimen C (400 W and 500 mm / s) found that the grain morphology changed from equiaxed in the lower region to columnar in the upper region.
\Rightarrow The texture in the upper area increased to a MUD of 2.51 (from 1.22) with an aspect ratio of 3.5 (from 1.6). The equiaxed region, featured no cracking.

NATIONAL
CENTRE
ADDITIVE
7xxx Material Development
MANUFACTURING

Crack Analysis
>Lower energy density specimens had large crack networks with less keyhole pores.
>Higher energy density specimens had small crack networks with large keyhole pores.
>Parameter changes have some effect on porosity and cracking but did not eliminate hot cracking.

- Emphasises the importance of alloy design and chemistry.

A20X Material Development

YIELD STRENGTH

Alsiomg - 238 MPa

A20X Powder - 440 MPa

ULTIMATE TENSILE STRENGTH

Alsiomg -306 MPa

A20X Powder - 511 MPa

ELONGATION

AISi10Mg-11\%

A20X Powder - 13\%

mic
 Technology Centie

NATIONAL
CENTRE
ADDITIVE
A20X Material Development
MANUFACTURING

Material Summary
> Ultimate Tensile Strength up to 511 MPa.
$>$ Yield Strength up to 440 MPa .
$>$ Elongation at fracture up to 13%.
> Aerospace-approved.
$>$ Excellent high-temperature strength performance.
$>$ Fatigue properties comparable to 7xxx alloys.
$>$ Processability comparable to AISi10Mg.
$>$ Fully equiaxed microstructure.

Image: ECKART

MANUFACTURING

Build 1

Build 2

mitc Manulacluring

NATIONAL
CENTRE
ADDITIVE
MANUFACTURING
> Mean HT UTS $=457 \mathrm{MPa}$
> Mean HT 0.2\% PS = 383.5 MPa
> Mean HT Young's Modulus $=73.5 \mathrm{GPa}$
> Mean HT Elongation $=11.6 \%$

A20X Material Development

Interval Plot of Elongation after Fracture (\%)

Interval Plot of Youngs Modulus (GPa)

A20X Material Development

Outcome

- 65% mass reduction
- 27% increase in cooling area
- 14 components consolidated to one

Lattice, surface texture and automated design tools (Designed in nTopology)

NATIONAL
CENTRE
ADDITIVE
CP1 Material Development
MANUFACTURING

- Constellium Aheadd CP1 is a AlZrFe (8xxx) alloy with a strong combination of strength, ductility and conductivity.
- It utilises a simple post build, single hold temperature heat treatment with no quench for better geometric control.
- It is expected to be robust within the PBF-LB environment, the melt pool is expected to be stable and there are no volatile elements such as Zn or Mg .
- Constellium suggest:
- CP1 can achieve high productivity and higher print speeds than Al-Si alloys with lower residual stress.

- Initial data shows excellent corrosion resistance and surface finishing properties.

NATIONAL
CENTRE
ADDITIVE
CP1 Material Development
MANUFACTURING
> Build 1 assessed bulk density
> Full factorial DoE with 2 levels, using supplier parameters as mid-point.
> 6 parameter sets resulted in mean AD over 99.3\% (highest is 99.7\%)
> AD results validated optically.

NATIONAL
CENTRE
ADDITIVE
MANUFACTURING
> Thermal conductivity calculated as the product of Archimedes density, specific heat and thermal diffusivity.
> Tensile data at room temperature and elevated temperature.
$>$ Heat treatment 1 tailored to high conductivity.
$>$ Heat Treatment 2 is a trade off between conductivity and strength.

CP1 Material Development

CP1 Yield Strength (MPa) - Elevated Temperature

CP1 Material Development

Motor Windings Build

Assembled Stator Pack

Thankyou

Joseph.Chamberlin@the-mtc.org https://ncam.the-mtc.org/

DIGITAL \& ADVANCED MANUFACTURING ADVANCES IN ADDITIVE MATERIALS

YOUR FEEDACK IS IMPORTANT TO US

[^0]: Note: ULTEM ${ }^{\text {TM }}$ is a registered trademark of SABIC or affiliates; 1. Xxx

